Chapter 4
Ekman layer transports, Ekman pumping, and the Sverdrup balance

Geostrophic flow, or the flow produced by a balance between the pressure gradient force
and the Coriolis force, is frictionless flow. But momentum from the wind field is
transferred into the ocean by friction; so frictional forces must be important in the surface
boundary layer. The dynamics of this layer are best understood if it is assumed initially that
the ocean interior is at rest, i.e. all isopycnal (and, as a consequence, all isobaric) surfaces
are flat and steric height is constant everywhere. The balance of forces in the surface layer is
then purely between the frictional force which transports momentum downwards, and the
Coriolis force.

Ekman layer transports

The details of the flow in the surface layer, known as the Ekman drift after its first
investigator, are complicated and depend on detailed knowledge of the coefficients of
turbulent mixing. If fluctuations of periods shorter than a day are eliminated it is found that
the current moves at an angle to the wind, turning further away from the wind direction and
becoming weaker with depth. (Any of the text books mentioned in earlier chapters can be
consulted for a description of the Ekman layer.) For the purpose of regional oceanography it
is important to note that for a determination of total transport in the surface layer,
knowledge about the details of the turbulent mixing process is not necessary. Theoretical
analysis gives a relationship between the wind stress and the depth-integrated flow that
develops in response to the wind which we formulate as

Rule 3: The wind-driven component of transport in the
surface boundary or Ekman layer is directed perpendicular
to the mean wind stress, to the left of the wind stress in
the southern hemisphere and to the right in the northern
hemisphere.

The magnitude of the Ekman layer transport M, is given by:
IM 1l =1x/fI . 4.1)

Here, M, is the wind-generated mass transport per unit width integrated over the depth of
the Ekman layer, with dimensions kg m-1 s'l; T is the wind stress, and f the Coriolis
parameter introduced earlier. The unit width is measured across the transport direction, i.e.
in the direction of the wind stress. The difference between the wind stress direction and the
direction of M, develops because the Coriolis force acts perpendicular to the water
movement; Rule 3 ensures that it opposes the wind stress, and eqn (4.1) ensures that it
balances it in magnitude.

If we now relax the initial assumption of flat isopycnal surfaces, a pressure gradient force
will be present throughout the water column, up to the surface, and geostrophic flow will
develop. M, is then the additional, non-geostrophic transport in the Ekman layer. As with
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monsoon. Along most eastern boundaries (box E) the wind stress is directed equatorward;
Ekman transport is directed offshore but cannot come out of the coast - again, upwelling
must occur. Near western boundaries the dynamics are governed by the western boundary
currents; Ekman layer dynamics are often strongly modified, or negligible, in these regions.

Fig. 4.1. Illustration of Ekman transport and
Ekman pumping, based on the eastern Pacific
Ocean. Full arrows indicate the wind, open
arrows the Ekman transport resulting from the
corresponding wind stress. Note the change of
direction of the Ekman transport relative to the
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The Sverdrup balance

We now return to the question raised at the end of the last chapter: What replenishes the
bulges in the subtropical thermocline, seen (for example) in the temperature distribution of
Fig 2.5 at 500 m depth? The answer is found by combining the dynamics of the ocean
interior and western boundary currents with the dynamics of the Ekman layer.

It was shown in the last chapter that in the absence of forcing, thermocline bulges in a
11/5 layer ocean move westward at Rossby wave speed. We obtained an equation for the
bulge movement, or local depth variation of the thermocline:

OH/dt= (Bg/f2())AUplpy) HOH I dx .  (4.3)

Bulge movement is a consequence of geostrophic transport convergence of anticyclonic
eddies in the west and divergence in the east as shown in Figure 3.4, so eqn (4.3) can be
seen as a balance equation for the convergence of the flow field. Now, the bulges seen in
Figure 2.5¢ represent the annual mean, i.e. a steady state; so we must have dH/dt = 0. We
achieve this by adding the convergence of the Ekman transport (Ekman pumping). The
change in thermocline depth produced by Ekman pumping is the vertical velocity at the
base of the Ekman layer. Taking this quantity from eqn (4.2) and adding it to eqn (4.3)
gives the steady state balance as

Bglf20))(Ap/ py) HOH/dx = curl (v/ pof) . 4.4)

We can consider the right-hand side as continuously generating new bulges or depressions,
which then migrate westwards as Rossby waves. The net effect is that in the steady state,
an east-west gradient of H is set up which is in geostrophic balance, and that the mass
divergence associated with this gradient matches the Ekman pumping convergence. The fact
that energy propagates westward is no longer obvious in the steady state; but it does occur -
the intense western boundary currents in each ocean are in fact dissipating the energy that
has been fed into the ocean interior from the wind field by Ekman pumping. Because the
energy which is fed into these narrow currents is the result of accumulation of energy from
the wind field over the entire ocean surface, the western boundary currents are very intense,
jet-like features. They achieve energy dissipation through bottom friction on the shelf and
slope, and by spawning eddies and ejecting them into the open ocean.

Equation (4.4) is one form of an equation known as the Sverdrup relation for the 11/,
layer ocean. It was derived by Hans Ulrik Sverdrup and allows us to determine H
everywhere for any ocean basin from a knowledge of H at its eastern boundary. (Knowledge
of H at the western boundary is not of much use, since the Sverdrup relation includes only
geostrophy and Ekman layer dynamics and does not apply to the western boundary
currents.) We note that the right-hand side of eqn (4.4) is directly obtainable from the wind
stress data. In other words, the depth variation of the thermocline, one of the key features of
the oceans, can be determined from atmospheric observations alone! The left hand side of
eqn (4.4), on the other hand, contains the essence of regional oceanography, namely the
observations of temperature and salinity. In the 11/, layer model which we used to simplify
our description of ocean dynamics, the role of the observations is reduced to a determination
of thermocline depth. In the more realistic case of a continuously stratified ocean the
Sverdrup relation takes on the form (on multiplying both sides by f2/ )
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flows about 500 km southward and returns to the Indian Ocean. In reality, such intense
flows which pass through an open ocean region are unstable, particularly when they
"double back" on themselves as in Figure 4.4 southwest of South Africa; the real Agulhas
Current outflow turns eastward to join the Antarctic Circumpolar Current, as seen in
Figures 4.5 and 4.6. The chapters on the Indian Ocean will take this up further.

The outflows from the western boundary currents of the North Atlantic and North Pacific
Oceans are also not well represented by the model derived from the wind data. Both are
underestimated in magnitude; and the Gulf Stream separation occurs near Labrador, rather
than at its observed location near Cape Hatteras in the northern USA. However, considering
the simplicity of the concept of Ekman pumping, Rossby wave propagation, and the
Sverdrup balance as the result of an equilibrium between these two phenomena, it is
pleasing to see to what large degree the atmospheric and oceanographic data sets available
today confirm its validity. The model certainly accounts for a considerable fraction of what
we see in the depth-integrated flow of the world ocean. The plan for the World Ocean
Circulation Experiment (Figure 2.4) is therefore based on the concept that a systematic
survey of temperature and salinity, augmented by direct current measurements through
moorings in regions where the Sverdrup relation does not hold, will result in a reliable
description of the oceanic circulation.

The stream function and depth-integrated transports

Without doubt, depth-integrated steric height P is the best quantity to test the Sverdrup
relation. Unfortunately, it does not provide the most convenient visualization of the flow
field on oceanic scales, since its distribution combines variations of depth-integrated flow
with the latitude-dependence of the Coriolis parameter. A better representation is achieved
by introduction of a stream function which eliminates f from the picture. The direction of
the total net transport between the assumed depth of no motion and the surface is then
indicated by the direction of the streamlines, and its magnitude is inversely proportional to
the distance between them. Because there cannot be any flow through the coast, coastlines
are streamlines by definition. If the coast is continuous it coincides with a single
streamline, i.e. the value of the stream function along the coast is the same. It is also
possible to estimate the flow around major islands such as Australia and New Zealand and
allocate stream function values to their coasts (Godfrey, 1989).

If we neglect the small flow from the Arctic into the north Pacific Ocean and consider
Bering Strait closed, the world ocean is surrounded by a single continuous coastline (formed
by the Asian, African and American continents) and contains only few large islands
(Antarctica, Greenland, Iceland, Australia, New Zealand, Madagascar). Figure 4.7 shows the
volume transport stream function for this continuous domain. Since the stream function
calculation is based on Sverdrup dynamics it can only proceed starting from eastern
boundaries and extend to the outer edges of the western boundary currents. The differences in
stream function values across the gap near the western coastlines give the transport of the
western boundary currents. Details of the depth-integrated flow near the equator that are
masked in Figure 4.4 by the variation of the Coriolis parameter (in particular the sign
change of f across the equator) come out clearly in the stream function map. The North
Equatorial Countercurrent, flowing eastward between 5° and 15°N in the North Pacific
Ocean, is seen as a major feature. The corresponding feature in the South Pacific Ocean is
extremely weak and restricted to an area south-east of Papua New Guinea. A strong counter-
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Fig. 4.5. Depth-integrated steric height P, from the left side of the Sverdrup relation (eqn
(4.5)), using the data from Levitus (1982), for a depth of no motion of 1500 m. Units are
10° m?.
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Fig. 4.6. Depth-integrated steric height P, from the left side of the Sverdrup relation (eqn (4.5)),
using the data from Levitus (1982) for a depth of no motion of 2500 m. Units are 103 m?.
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poleward transport of heat. To give an example, a simple calculation with the winds of
Figure 1.2 shows that in the north Pacific Ocean the northward Ekman transport across the
southern edge of the subtropical gyre at about 16°N (the position of the strongest Trades)
amounts to some 28 Sv, with equal and opposite (and colder) geostrophic flow below.
Similarly, there is a net poleward Ekman flux of 29 Sv across the northern edge of the
south Pacific subtropical gyre at about 14°S, again compensated by equal and opposite
geostrophic flow of lower mean temperature, so that heat is transported poleward here also.
Thus the simple wind-driven circulation of Figure 4.7 which gives such a good illustration
of the use of Sverdrup dynamics can be very misleading when it comes to a discussion of
the amount of heat carried by the ocean.
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Fig. 4.8. Annual mean of eddy energy in the ocean as observed by satellite altimeter during
December 1986 — November 1987. The eddies are detected by measuring the shape of the sea
surface, which bulges downward in cyclonic and upward in anticyclonic eddies as explained in
Figures 2.7 and 3.3. The quantity shown is the standard deviation of observed sea level (cm)
from the mean sea level over the observation period. From Fu et al. (1988).

This concludes our discussion of ocean transport dynamics. A legitimate question at this
point could be: If we go out to sea on a research vessel and make some observations, to
which degree can we expect to see our picture of the large oceanic gyres and associated
currents confirmed by the new data? A first answer is of course that Figures 4.5 and 4.6 are
based on observations; they should therefore reflect the real world. A second answer is that
they are based on annual mean data distributions. The question is then, can we expect to
find the annual mean situation if we go out to sea and take a snap shot of the temperature
and salinity distribution?

The answer is - yes, if we make our study area large enough. A synoptic survey of the
subtropical north Atlantic Ocean would show the subtropical gyre. However, superimposed
we would find a wealth of other structures, mainly eddies of all shapes and sizes. If we
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